
Using pattern search methods for surface structure determination of nanomaterials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys.: Condens. Matter 18 8693

(http://iopscience.iop.org/0953-8984/18/39/002)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 14:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/18/39
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 18 (2006) 8693–8706 doi:10.1088/0953-8984/18/39/002

Using pattern search methods for surface structure
determination of nanomaterials

Zhengji Zhao1, Juan C Meza1 and M Van Hove2

1 High Performance Computing Research Department, Lawrence Berkeley National Laboratory,
1 Cyclotron Road Mail Stop 50F1650, Berkeley, CA 94720, USA
2 Department of Physics and Materials Science, City University of Hong Kong, Hong Kong

E-mail: ZZhao@lbl.gov

Received 9 June 2006, in final form 8 August 2006
Published 11 September 2006
Online at stacks.iop.org/JPhysCM/18/8693

Abstract
Atomic-scale surface structure plays an important role in describing many
properties of materials, especially in the case of nanomaterials. One of the
most effective techniques for the determination of surface structure is low-
energy electron diffraction (LEED), which can be used in conjunction with
optimization to fit simulated LEED intensities to experimental data. This
optimization problem has a number of characteristics that make it challenging:
it has many local minima, the optimization variables can be either continuous
or categorical, the objective function can be discontinuous, there are no exact
analytical derivatives (and no derivatives at all for categorical variables) and
function evaluations are expensive. In this study we show how to apply a
particular class of optimization methods known as pattern search methods to
address these challenges. These methods do not explicitly use derivatives, and
are particularly appropriate when categorical variables are present, an important
feature that has not been addressed in previous LEED studies. We have
found that pattern search methods can produce excellent results compared to
previously used methods, both in terms of performance and in locating optimal
results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The determination of the surface structure of nanostructures is important because many of
their properties (e.g. mechanical, electrical, magnetic, chemical and optical) depend to some
extent on the atomic-scale structure of the surface. For example, a surface formed by adding
lithium to the surface of a nickel crystal can be used as a catalyst. The key to understanding
and controlling the catalytic activity, however, is to have exact knowledge about how these
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Figure 1. Set-up of a typical LEED experiment (a) and a typical LEED pattern (b).

two types of atoms (Li and Ni) occupy the surface. By surface structure here we mean
the geometric positions of the atoms within the several atomic layers (or a nanometre-scale
distance) from the surface and the chemical identities of these atoms. As a result of the surface
reconstruction, these atoms could occupy any geometric positions within several atomic layers
from the surface.

Among the various methods [1, 2] of determining the surface structure, one of the principal
techniques is low energy electron diffraction (LEED) [3–5] which combines experimental and
theoretical analysis. This is mainly due to the fact that the LEED experiment is inexpensive
compared to most other techniques, while still providing high precision for the determination
of the full surface structure. In fact, some methods are only able to determine a subset of
the surface structure. In a LEED experiment, an electron beam is emitted from an electron
gun (usually with an energy of 20–600 eV) and hits the surface of the test sample. By
recording the reflected beams and their intensities (see figure 1), one can obtain the electron
diffraction pattern, which includes enough information for an accurate determination of the
surface structure. Given a trial surface structure, one can also compute a LEED pattern by
calculating the multiple scattering of the incoming electron beam due to these surface atoms.
By comparing the simulated LEED pattern with the experimental data, one can iterate until a
surface structure that matches the experimental diffraction intensities is determined.

The LEED method can therefore be formulated as an inverse optimization problem subject
to some constraints. In this problem, the optimization contains two types of parameters,
continuous and categorical, and the objective function to be minimized is the misfit between
the calculation and the experiment. The continuous variables correspond to the atomic
positions and the categorical variables correspond to the chemical identities of the atoms. By
a categorical variable we mean one that must be chosen from among two or more categories,
but where there is no intrinsic ordering to the categories. The major distinction between these
and discrete variables is that the lack of an intrinsic ordering precludes us from using standard
mixed integer programming methods. These types of optimization problems are known as
mixed variable problems because of the two types of parameters that need to be considered.
The inverse problem has a number of characteristics that make it challenging, however: the
objective function is not smooth (due to the presence of the categorical variables and invalid
points in the parameter space, and also due to the numerical effects on a fine scale), there exist
many local minima, derivative information is difficult to get or unavailable and the function
evaluations are expensive.
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A number of approaches to automated searches for the best global solution have been
explored and applied over the years using LEED, including simulated annealing [6], fast
simulated annealing [7–10] and a modified random sampling algorithm [11]. These methods,
which allow global optimization, were, however, limited to relatively simple problems in
quite restricted search domains. In particular, no element identification is normally attempted,
avoiding the fitting of categorical variables. As implemented, these methods tend to be very
computationally intensive, requiring the evaluation of large numbers of trial solutions.

The most relevant previous attempts [12, 13] to solve this mixed variable optimization
problem used genetic algorithms (GAs) which simulate the natural evolution of living
organisms. In these algorithms, each candidate solution, which is denoted by a chromosome,
is assigned a ‘fitness’ value. Chromosomes with a lower function value are assigned a higher
fitness value. The algorithm starts with a population of random chromosomes and applies
a selection rule, which combines chance and a preference for those chromosomes with high
fitness values, to choose pairs of chromosomes to be used as parents for the next generation.
The parents are then used to produce the next generation of chromosomes (children) following
certain crossover and mutation rules. The hope is that, following the analogy of survival of
the fittest, the better parents will produce better children. The population is then updated by
adding the children to the population. There are many different ways to update the population;
children may simply replace the parents or allow parents to compete with their children so that
only those chromosomes with higher fitness values are kept in the population. This process
can be repeated until a chromosome with a satisfactorily high fitness value is found. For more
details about GAs, we refer to [14–16].

Döll and Van Hove first applied GAs to the determination of a Ir(110)-(1 × 2) missing
row surface structure [12]. Since the test problem had a rather small parameter space
(1 Å × 1 Å × 1 Å), they were able to perform an exhaustive grid search (on a grid of
0.05 Å fineness). They found that GAs could locate the global minimum 10 times faster
than an exhaustive grid search, and performed better than simulated annealing [6]. They
therefore concluded that GAs could be used as a global optimizer for LEED surface structure
determination [12]. Later, Stone applied GAs to the complex surface Ni(001)-(5 × 5)-Li [17].
This surface is formed by adding lithium atoms to a nickel crystal surface. Because the
parameter space volume is around 12.5 Å × 12.5 Å × 5 Å, an exhaustive search is not viable.
However, using a parallel GA package that he developed, he showed that GAs are able to
find the best known solution [17] for this structure if the atoms are allowed a small relaxation
(±0.4 Å) from the best known solution. In addition, the categorical variables were restricted
to the best known value; otherwise GAs would generate a large number of invalid structures,
i.e. physically unacceptable solutions [13].

Our present work continues the effort to find a global optimizer for the problem of LEED
surface structure determination. We have adapted and applied pattern search methods to solve
this optimization problem and we were able to verify that pattern search methods have better
performance than GAs. They generate significantly fewer invalid structures, and they are able
to find the best known solution several times faster than GAs under the same local relaxations.
The new methods can also find the best known solution and even improved solutions under
complete relaxation of the atoms. Finally, the new methods allow for the simultaneous
search over the whole parameter space (continuous variables and categorical variables), which
is essential for a method to be used as a global optimizer in the LEED surface structure
determination problem. Our numerical experiments also show that pattern search methods are
robust.

Pattern search methods have been widely used in many applications. One version, the
Hooke and Jeeves (HJ) search algorithm [18], was used to solve the LEED surface structure
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problem for CdTe(110) [19, 20]. However, this approach required an initial search that used
heuristics to find good initial points near some promising local minima before running the
HJ algorithm, where it was used as a local optimizer for the continuous variables. Since
then, there have been many improvements, both theoretically and algorithmically, to the class
of pattern search methods. In particular, methods for handling constraints and categorical
variables have been developed. These new developments allow us to apply them to the global
LEED surface structure determination problem. We will review these methods in more detail in
section 2.

The remaining sections of the paper are organized as follows. In section 2 we review
the pattern search method, with particular attention to its convergence properties. Section 3
describes how to apply pattern search methods to the LEED surface structure problem. In
section 4 we present our numerical results on one test problem, the complex surface structure
determination of Ni-(5 × 5)-Li, and compare our results with those of genetic algorithms. In
section 5 we give concluding remarks.

2. Pattern search methods

Pattern search methods belong to a class of optimization methods known as direct search
methods. These methods have a long and rich history in science and engineering where
they have been applied to numerous problems. An excellent introduction and survey of these
methods can be found in [21], which also contains numerous references. The main attraction of
direct search methods is their ability to find optimal solutions without the need for computing
derivatives, in contrast to the more familiar gradient-based methods. This feature is particularly
attractive in situations where the objective function is a result of a simulation code.

The basic ideas behind these methods can be demonstrated through one of the early pattern
search methods known as compass search. The algorithm can be summarized as follows: from
the current point, we try steps in each of the four compass directions, east, west, north and
south. If one of these four steps yields a reduction in the function, the improved point becomes
the new iterate; if none of these steps yields an improvement, we try again with steps that are
half as large.

Figure 2 shows the first five iterations of the pattern search method applied to a typical
minimization problem. The algorithm starts with a finite initial step length. As the iterate
approaches the solution, the algorithm reduces the length of the steps (this turns out to be
central to the convergence analysis). Eventually, when the step length falls below a certain
tolerance, the algorithm is said to have converged and the search stops.

As this example demonstrates, an appealing characteristic of the pattern search method is
that it is simple and easy to implement and it only requires the ability to evaluate the function
at a point. A known disadvantage is that although the method may quickly decrease the initial
function value, it may be slow to detect a minimizer due to the convergence test being dependent
on reducing the step length below a certain threshold. Unfortunately, this is the price of not
explicitly using any derivative information.

2.1. The algorithm and convergence analysis

Several generalizations of the simple pattern search method have been proposed and discussed
previously (see, for example, [21, 23]). These methods fall under the general classification of
generating set search (GSS) methods, which are categorized by using multiple search directions
computed from a generating set. One example from this class of methods is the generalized
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(a) Initial pattern (b) Move North (c) Move East

(d) Move North (e) Contract (f) Move East

Figure 2. First five iterations of the pattern search method applied to a two-dimensional
optimization problem (Broyden tridiagonal function [22]). The grey lines in the background are
level sets, and the solution to the problem is marked with a star. In each panel, the centre dot denotes
the current iterate, and the four surrounding dots represent the trial points under consideration at that
iteration; the trial points from the previous iteration are shown in dotted circles for comparison. The
algorithm starts with a certain step length; when the iterate approaches the solution, the algorithm
reduces the length of the steps taken; when the step length falls below a certain tolerance, the
algorithm stops. This example is from [21].

pattern search (GPS) method [24]. This method, originally developed for unconstrained
optimization problems, has been extended by several authors to include general nonlinear
constraints and the use of mixed variables. This latter property in particular is essential to our
use of the algorithm for the LEED surface structure determination problem. In addition, the
ability to specify general constraints is useful when one wishes to impose physical restrictions
on possible solutions, for example symmetry or realistic bond distances (for details about the
GPS method for constrained optimization see sections 7 and 8 of [21]). The GPS method for
mixed variable problems is described in more detail in [25].

Consider the following problem:

minimize f (x)

where x ∈ Rn , f : Rn → R (Rn denotes the n-dimensional real search space).
We define a generating set (positive spanning set) D as a set of vectors whose non-negative

linear combinations span Rn . For instance, a positive spanning set D for Rn could be

{e1, e2, . . . , en,−e1,−e2, . . . ,−en},

where ei is the i th unit Cartesian vector in Rn . We note that this set must contain at least
n + 1 vectors to guarantee non-negative linear combinations and hence need not be unique.
The GPS method will take steps through search space comparing function values at each
of the points defined by one of the search directions and step lengths. We will let �k be
the step length control parameter, and let �tol be the tolerance used to test for convergence.
Assume that the algorithm starts with an initial guess x0 that has a finite function value
and an initial step length �0 > �tol. Then the GPS method can be described as follows:
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Algorithm 1: Generalized pattern search
1: Choose generating set D, for example, let D = {e1, e2, . . . , en,−e1,−e2, . . . ,−en}
2: Choose �0

3: for k = 1, 2, . . . do
4: if there exists dk ∈ D such that f (xk + �kdk) < f (xk) then
5: Set xk+1 = xk + �kdk � update the iterate
6: Set �k+1 = �k � no change to the step length control parameter
7: else
8: Set xk+1 = xk � f (xk + �kdk) � f (xk) for all dk ∈ D; do not update the iterate
9: Set �k+1 = 1

2�k � contract the step length control parameter
10: if �k+1 < �tol then
11: GPS algorithm has converged
12: end if
13: end if
14: end for

Each step of the GPS algorithm can be generalized even further. For example, in step 1
the lengths of the vectors in the generating set can take on any values between specified lower
and upper bounds; also, a finite number of additional search directions (other than the ones
already included in the generating set), may be added using heuristics or any other physics-
based approach that seems appropriate; for example, random search, a few generations of a
genetic algorithm, or Latin hypercube search. This adds an optional search step in each iteration
of a GPS algorithm. The search along the directions of the generating set is commonly referred
to as a local poll step. In step 4, instead of requiring a simple decrease of the function value, one
may instead require a larger decrease. Finally, different scale factors may be used to update the
step length control parameter �k , so that it is not always 1 in step 6 and 1/2 in step 9. These
generalizations allow for great latitude in using the GPS method and can have a significant
impact on the efficiency of the algorithm.

One of the main advantages of the GPS method is that although derivative information is
not explicitly used, the method can be shown to have strong convergence properties, which are
in many cases as good as for methods that require derivative information. This fact was not
fully appreciated until Torczon showed convergence of these algorithms under mild conditions
and Audet later proved that the convergence results could not be strengthened without adding
additional constraints [24]. The general outline of the proof can be shown to rely on satisfying
two conditions: the GPS algorithm needs to pick a descent direction, and the GPS algorithm
must avoid poor step lengths. The idea of the generating set enforces the first condition, and the
second condition is enforced through shortening the step length at unsuccessful iterates. The
surprising aspect of this class of algorithms is that convergence can be shown even though the
derivative of the function is never explicitly computed.

For our results, we have used a particular implementation of the GPS algorithm which is
part of a software package, NOMADm [26]. NOMADm is a MATLAB implementation of
the class of mesh-adaptive direct search (MADS) filter algorithms, which is a generalization of
pattern search for numerically solving nonlinear and mixed variable optimization problems
with general nonlinear inequality constraints. Since it is not a straightforward task to
generalize the concepts of a direct search algorithm to categorical variables, many available
implementations of GPS methods (including both parallel and serial codes) are specifically
designed for problems with continuous variables only. By contrast, NOMADm allows
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categorical variables, which has a distinct advantage for our problem. Due to the difficulty
posed by categorical variables, there are no search or polling strategies suggested for
categorical variables in NOMADm either; nonetheless it provides an interface from which
user-defined strategies can be applied to the categorical variables. In our results, for categorical
variables, at each iteration we have used an optional search step adapted from a Latin
hypercube search for continuous variables [26] and a ‘generating set’ adapted from the set
{e1, e2, . . . , en,−e1,−e2, . . . ,−en} for continuous variables for a local poll step.

3. LEED surface structure determination using GPS

LEED, in its most common application, is used in an iterative procedure to solve surface
structures. The LEED experiment is first simulated with a sophisticated scattering model.
For accuracy, the simulation must include multiple scattering, which makes the computation
expensive, especially for complex structures. Since the computation can only be performed
with a set of given atomic positions and chemical identities, it is necessary to start by guessing
the structure and then iterating the search through the space of physically realistic solutions.

The distinction between local and global optimization is important here. Efficient methods
of local optimization are available for LEED, as long as there are no categorical variables: for
example tensor LEED [27], which provides local derivatives with respect to the continuous
variables (atomic coordinates). Tensor LEED can also assist with categorical variables (the
atomic identities) in a method sometimes called ‘chemical tensor LEED’ [28, 29] for surface
structures structurally close to a certain reference. By contrast, global optimization is much
more demanding. The larger challenge lies in solving the optimization problem in the presence
of many other local minima. The LEED data itself do not provide much information to
determine where these other minima may be, so an exhaustive search (for both continuous and
categorical variables) would appear to be necessary, resulting in a computationally expensive
solution. The present work focuses on the need to make such global optimization in LEED as
efficient as possible.

The main output from a LEED code is the mismatch between the simulation and the
experimental data, which is encapsulated in a number called the R-factor [30]. In principle,
the R-factor is a continuous function of atomic positions, but it is discontinuous in terms of
atomic identities (one may also conveniently view a vacancy as just another atomic type, with
vanishing scattering strength). In practice, the functional dependence of the R-factor on the
continuous variables is not perfectly smooth, due to numerical discreteness in the experiment
and computation (e.g. typical computations involve iterations which are interrupted at variable
numbers of iterations, giving discontinuous results; similarly, theory includes an adjustable
energy shift which often causes discontinuous changes of the end points of the energy range
common with experiment).

Fortunately, there are powerful methods that reduce the solution space to be searched and
therefore the required computing effort. One is symmetry: many surface structures turn out to
be symmetrical relative to rotation, mirror or glide operations. Symmetry helps in two major
ways: the computation can be considerably accelerated (sometimes by orders of magnitude)
and memory usage is reduced. At the same time, the dimensionality of the search space is
greatly reduced. For these reasons, such symmetry is extensively used in our LEED codes [31].

The other computational savings come from imposing ‘realism’ on the search space. At
a simple level, one can impose upper and lower bounds on the interatomic distances (bond
lengths) and on the coordination numbers (numbers of nearest neighbours). This is commonly
done in organic crystallography with x-ray diffraction, but is rare for the remainder of the
periodic table because the rules for realism depend strongly on the nature of interatomic
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bonding, which varies greatly among pairs of elements. In particular, this constraining of the
search has not yet been applied with LEED, except in preliminary explorations with genetic
algorithms [13]. On the other hand, it has been almost universal in LEED studies to sharply
constrain the chemical elements: usually the experimenter knows which elements are present
(although not necessarily where), so this can be justified.

Our intent was thus to investigate the applicability and performance of a generalized
pattern search method for determining the surface structure of materials with LEED. In our
calculations, we used the Symmetrized Automated Tensor LEED package [31] to calculate the
R-factor, and used the package NOMADm [26] for the pattern search methods as mentioned
in section 2. As in [13], we applied the same set of necessary constraints to the search, and the
structures that do not satisfy these constraints (invalid structures) were assigned a big R-factor
(e.g. 1.6). The atomic positions can be expected to be obtained with an accuracy better than
0.1 Å = 0.01 nm, based on experience with extended surfaces [4].

4. Numerical results and discussion

We applied the GPS method to the complex surface formed by adding lithium (Li) atoms on a
nickel (Ni) crystal surface with (001) crystallographic orientation, and a (5 × 5) superlattice;
it is commonly labelled as Ni(001)-(5 × 5)-Li. This structure was analysed by LEED with
only the benefit of local optimization as provided by tensor LEED [27]. To perform the global
search, the authors of that analysis conceived of 45 different structural models from physical
information for this surface (such as symmetry, bond lengths and density of the Li layer). Each
model was locally optimized by tensor LEED; the best-fit model has the lowest R-factor value
0.24 (see figure 3). We refer to this structure henceforth as the best known structure for this
surface. This structure can be viewed as having a pure nickel substrate covered with three
overlayers, which have, in each (5 × 5) unit cell, 25 Ni atoms in the innermost overlayer, 16 Ni
and 8 Li in the middle overlayer, and 9 Li atoms in the outermost overlayer. The superlattice
cell has a size of about 12.5 Å × 12.5 Å, and the three layers have a combined thickness (in
the assumed models) of about 5 Å. If the full point group symmetry of the Ni(001) substrate
(namely p4m) is imposed, there are 14 inequivalent atoms in the cell (for example, those atoms
located within one octant). Therefore, to determine the structure of this surface, we need only
the coordinates of these 14 atoms as well as their chemical identities. Correspondingly, the
optimization problem has 3 × 14 = 42 continuous variables with a parameter space volume
of 12.5 Å × 12.5 Å × 5 Å and 14 categorical variables (each atom can be either Ni or Li).
There is one non-structural parameter—an adjustable ‘muffin-tin zero’ energy shift due to an
unknown energy zero in the theory relative to experiment—and the R-factor is an optimal
value also with respect to this energy shift. We did not count it as an optimization variable
here, since this optimization is done inside the TLEED code, uncontrolled by the GPS code.
To easily permit other models in this scheme one could allow the categorical variables to
also represent a vacancy, so that the number of atoms can vary, but this was not done in this
investigation.

To compare the performance of the GPS method to that of GAs, we performed similar
calculations on this test problem using both approaches. As mentioned in the introduction,
due to the large number of invalid (i.e. physically unrealistic) structures produced, only small
atomic relaxations (±0.4 Å) from the best known solution were allowed in the search with
GAs. Figure 4 illustrates the performance of the GAs: the horizontal axis shows the number
of function evaluations, while the vertical axis shows the R-factor. In this example, the atomic
types (chemical identities) are fixed to those of the best known structure. Since the initial
guesses for the atomic positions were restricted within ±0.4 Å from the best known atomic
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Figure 3. The surface formed by adding lithium atoms on a nickel surface. The 45 small panels on
the left are structure models built to fit LEED experimental intensities from physical intuition (each
model was locally optimized by tensor LEED). The four panels on the right detail structure model
31 (panels (c) and (d) represent two separate layers), which has the lowest R-factor among these
models: we label it the ‘best known solution’ (courtesy of Mizuno) [17].

positions, this example actually represents near-local rather than global optimization. The best
known structure was found at around 2400 function evaluations.

The same calculation as in figure 4 was performed by the GPS method, with results shown
in figure 5. From these two figures, we can see that GPS requires fewer function calls to locate
an optimal solution. GPS found an improved solution (R-factor = 0.12) at around 600 function
evaluations, while the GA found the best known solution (R-factor = 0.24) already at around
2400 function evaluations. Another observation from the figures is that GPS generates far fewer
invalid structures than the GA. The first 1000 trial structures produced by GA were all invalid,
and after the first valid trial structure was found, a large fraction of the trial structures remained
invalid. By contrast, the first 100 trial structures generated by GPS were all invalid, but once a
valid structure was found, GPS generated an increasingly large fraction of valid structures until
no more invalid structures were produced.

In our next test, we kept the atomic positions (42 continuous variables) fixed, only allowing
the chemical identities (categorical variables) to change. Figures 6 and 7 show results by GA
and GPS, respectively. Both methods started from the same initial guess of the categorical
variables, labelled as 11111122211122; in this notation each of the 14 adjustable atoms is
listed as having chemical type 1 for Li or 2 for Ni, with the atoms listed in some predefined but
arbitrary order. From these two figures, we see that GA needs 280 function evaluations to obtain
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Figure 4. A GA result of a continuous variable search following [13]. Only the continuous variables
are relaxed; the categorical variables are fixed at the best known chemical identities. The best
known structure was found after about 2400 function calls. Note that the relaxation of the atoms
was constrained to be ±0.4 Å from the best known atomic positions.
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Figure 5. As figure 4, but using GPS, which generates fewer invalid structures than GA. At 591
function evaluations the improved solution was found (R-factor = 0.12).

the best known solution 11111222222222, while GPS needs only 49 function evaluations;
moreover, GPS found an improved solution at 135 function evaluations. Again, we see that
in these tests GPS requires far fewer function evaluations than GA. It should be noted for
completeness, however, that the improved structure found by GPS with the R-factor near 0.12
is actually also invalid, as it is found to have an unphysically large shift of the energy zero3,

3 The optimum muffin-tin zero was −128 eV, which is so far outside the normal range (5–15 eV) that the corresponding
structure is totally meaningless. This very large energy shift results in a minimal overlap between calculated and
experimental curves, which can always be optimized to a high degree, without providing useful information.
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Figure 6. A GA result of chemical identity search following [13]. Only the categorical variables are
relaxed; continuous variables are fixed at the best known atomic positions. The best known solution
was found at 280 function evaluations. Note that the number of function evaluations in GAs is the
product of the number of generations and the population size (10).
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Figure 7. As figure 6, but using GPS, which requires fewer function evaluations than GA. At the
49th function call, the best known solution was found; at the 135th function call, an improved
solution with R-factor = 0.1184 was found.

this nonetheless does not reflect negatively on the GPS method, but points to the need for better
limits on the allowable range of this variable.

To test the robustness of the GPS method, we ran the same search as above with 20 different
randomly chosen initial guesses: figure 8 shows the results of all 20 trials. We see that the GPS
method is very robust: all 20 runs reached the same minimum R-factor of 0.1184 with an
average of 152 function evaluations.



8704 Z Zhao et al

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of function calls

M
in

im
um

 R
-f

ac
to

r

Best known solution R-factor=0.24

New minimum R-factor=0.1184

Figure 8. The same GPS search as in figure 7, with 20 different randomly chosen initial guesses.
This shows that GPS is robust. All 20 runs of the chemical identity search reached the same
minimum R-factor.
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Figure 9. A GPS run starting with the best known atomic positions with random displacements,
with a window size of ±0.4 Å and a random guess of the chemical identities, allowing relaxations
of both types of variable: complete relaxation of atomic positions in the in-plane x and y directions,
and layer constraints in the z direction. An improved solution with an R-factor = 0.2275 was
found.

To be used as a global optimizer in the LEED surface structure determination problem, one
of the key requirements of the method is the ability to simultaneously relax both the continuous
and categorical variables; another requirement, of course, is the ability to relax atomic positions
globally (not just locally), so the search for the optimum really explores the whole parameter
space. Figure 9 shows that GPS allows both kinds of variables to be relaxed simultaneously. In
this calculation, we started with the best known atomic positions with random displacements
with a window size ±0.4 Å and a random guess of the chemical identities, and we completely
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relaxed atoms in the xy plane, while we kept only the layer constraints in the z direction (this
limitation was chosen mainly for the sake of simplicity of programming; there is no difficulty
in principle in removing this constraint). We can see from figure 9 that after 650 function calls
both the best known categorical and continuous variables were found. Further searching found
an improved solution with R-factor = 0.2275 at around 660 function calls. This solution has
the same chemical identities as the best known structure, which is 11111222222222, and has
the largest difference of 0.13 Å from the previous best known atomic positions4.

5. Conclusions

The generalized pattern search (GPS) method has been applied to the determination of the
surface structure of the complex structure Ni(001)-(5×5)-Li by low energy electron diffraction
(LEED). Our evaluation shows that the GPS method exhibits a better performance than the
previously used genetic algorithm (GA) in terms of efficiency and ability to locate the optimal
solutions, at least for the relatively local search that the earlier GA tests were limited to. In
addition, GPS produces far fewer invalid (i.e. unphysical) structures and requires far fewer
function evaluations than GA.

We were also able to demonstrate that the GPS method is robust and allows complete
relaxation of the atomic positions, as required for global optimization. Moreover, it allows
simultaneous relaxation of both the atomic positions and atomic types (chemical identities).
We also found solutions with a better fit over the previously best known solution (even though
the energy zero shift of one of the solutions is unrealistic for reasons unrelated to GPS). Our
evaluation shows that GPS optimization methods are promising candidates for LEED surface
structure determination.

It is clear that for GPS, as for other optimization methods, a validity test would be very
useful to further reduce the time-consuming calculation of unphysical structures generated
during the optimization process. Such a test could include limits on interatomic distances and
angles, as well as on the unknown energy zero shift between theory and experiment. It could
even, in a more sophisticated approach, include the total energy of the system, since that energy
must also be a minimum for the correct solution. These are all subjects for future research.
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